Grid Solutions

Models PTG4-1-75 & PTG4-2-75

Indoor Voltage Transformers Medium Voltage

Accuracy Class

 $0.3~\rm WXMY~1.2ZZ~at~100\%~rated~voltage~with~120~\rm V~based~ANSI~burden.$

0.3 WXMY, 1.2Z at 58% rated voltage with 69.3 V based ANSI burden.

Frequency

60 Hz.

Maximum System Voltage

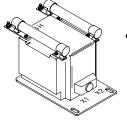
9.52 kV, BIL 75 kV.

Thermal Rating

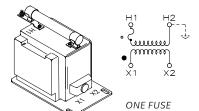
1,500 VA 30 °C. amb. 1,000 VA 55 °C. amb.

Approximate weight 85 lbs. unfused.

UNFUSED Two Bushing



REGULATORY AGENCY APPROVALS


(F) LR89403

Manufactured to meet the requirements of ANSI/IEEE C57.13. Classified by U.L. in accordance with IEC 44-1

Two Bushings

One Bushing

PTG4

	Two B	ushings (a)		Catalog Numbers				
Group	Primary Voltage	Ratio	Secondary Voltage	Unfused	Fuses	Fuse Clips Only	Switchgear Style	
1	*4,200	35:1	120	PTG4-2-75-422	PTG4-2-75-422FF	PTG4-2-75-422CC	PTG4-2-75-422SS	
2	*4,800	40:1	120	PTG4-2-75-482	PTG4-2-75-482FF	PTG4-2-75-482CC	PTG4-2-75-482SS	
2	6,600	60:1	110-50 Hz	PTG4-2-75-662	PTG4-2-75-662FF	PTG4-2-75-662CC	PTG4-2-75-662SS	
2	*7,200	60:1	120	PTG4-2-75-722	PTG4-2-75-722FF	PTG4-2-75-722CC	PTG4-2-75-722SS	
2	8,400	70:1	120	PTG4-2-75-842	PTG4-2-75-842FF	PTG4-2-75-842CC	PTG4-2-75-842SS	

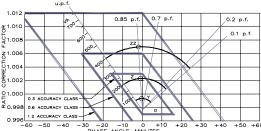
PTG4

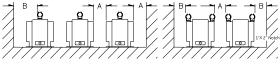
One Bushings (b)					Catalog Numbers			
Group	Primary Voltage	Ratio	Secondary Voltage	R _{FR} (c)	Fuses	Fuse Clips Only	Switchgear Style	
4A	*4200	35:1	120	65	PTG4-1-75-422F	PTG4-1-75-422C	PTG4-1-75-422S	
4A	*4800	40:1	120	65	PTG4-1-75-482F	PTG4-1-75-482C	PTG4-1-75-482S	
4B	6600	60:1	110-50 Hz	65	PTG4-1-75-662F	PTG4-1-75-662C	PTG4-1-75-662S	
4B	*7200	60:1	120	65	PTG4-1-75-722F	PTG4-1-75-722C	PTG4-1-75-722S	
4B	8400	70:1	120	65	PTG4-1-75-842F	PTG4-1-75-842C	PTG4-1-75-842S	

NOTE: All Primary voltages marked with an asterisk (*) are approved for revenue metering in Canada by Industry Canada, Approval No. AE-0429

Models PTG4-1-75 & PTG4-2-75

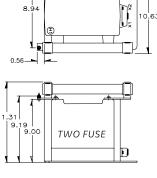
Recommended Minimum Spacings


A = Unit to Unit = 1.00" minimum.


B = HV to Ground in air = 4.50" minimum.

Recommended spacing are for guidance only.

User needs to set appropriate values to assure performance for high potential test, impulse test, high humidity, partial discharge, high altitude, andother considerations like configuration.


Circle Diagram

The circle diagram can be used to predict the performance of a transformer for various loads and power factors. A convenient scale of volt-ampere is shown on the unity power factor line (u.p.f) and commences at the zero or no-load locus. To use the diagram, measure the known V.A. and scribe an arc about the "Zero" locus of a length that contains the angle of the burden power factor. The point at which the arc terminates is the error locus in phase angle minutes and ratio correction factor.

PTG4

Fuse for PTG4 Transformer	Ratings (kV)	Interrupting Amperes (Sym)	Suggested Rating Continuous Amp	Cap Dia. Inches (a)	Length Inches	Clip Centers Inches
4,200:120 V	15.5 kV	80,000	2.0E	1.63	13	11.50
4,800:120 V	15.5 kV	80,000	2.0E	1.63	13	11.50
6,600:110 V	15.5 kV	80,000	1.0E	1.63	13	11.50
7,200:120 V	15.5 kV	80,000	1.0E	1.63	13	11.50
8,400:120 V	15.5 kV	80,000	1.0E	1.63	13	11.50

(a) Two fuse transformers should not be used for Y connections. It is preferred practice to connect one lead from each voltage transformer directly to the neutral terminal, using a fuse in the line side of the primary only. By using this connection a transformer can never be made "live" from the line side by reason of a blown fuse in the neutral side. For continuous operation the transformer primary voltage should not exceed 110% of rated value.

(b) Voltage transformers connected line-to-ground cannot be considered to be grounding transformers and must not be operated with the secondaries in closed delta becaus excessive currents may flow in the delta.

(c) See page 32, item 1 for ferroresonance considerations. Values in table are in ohms. Note: It is recommended that system line-to-line voltage not exceed the transformer maximum system voltage level.

(d) Fuse clips noted as "CC" or "C" accept fuses with 1.0" Dia. caps and 5" clip centers. Fuses clips with a suffix "CCS" or "CS" accept fuses with 0.81 in. caps and 5 in. clip centers.

Note: It is recommended that system line-to-line voltage not exceed the transformer maximum system voltage level.

- Primary terminals that are unfused are 1/4-20 brass screws with one flatwasher and lockwasher.
- Primary terminals that are fused are 1/4-20 brass screws with one flatwasher and lockwasher and two nuts.
- Secondary terminals are No. 10-32 brass screws with one flatwasher and lockwasher
- The core and coil assembly is vacuum encapsulated in polyurethane resin.
- Thermal burden rating is for 120 volt secondaries.
- Switch gear style is similar to fused style. No fuse or fuse clip is provide, but inserts for fuse clips are supplied.
- A test card is provided with each unit

GEGridSolutions.com

Grid-AIS-L4-ITI_Model_PTG4-1489-2017_08-EN. © Copyright 2017. General Electric Company and Instrument Transformers LLC reserve the right to change specifications of described products at any time without notice and without obligation to notify any person of such changes.

Worldwide Contact Center

Web: www.GEGridSolutions.com/contact

Phone: +44 (0) 1785 250 070

USA and Canada: +1 (0) 800 547 8629

Europe, Middle East and Africa: +34 (0) 94 485 88 00

